Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable and Sustainable Energy Reviews
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Review and characterisation of high-temperature phase change material candidates between 500 C and 700°C

Authors: Ming Liu; Ehsan Shamil Omaraa; Jia Qi; Pegah Haseli; Jumal Ibrahim; Dmitry Sergeev; Michael Müller; +2 Authors

Review and characterisation of high-temperature phase change material candidates between 500 C and 700°C

Abstract

Abstract Latent heat thermal energy storage, by using phase change materials (PCMs), is considered as a promising technology that can be integrated into concentrated solar power (CSP) applications to mitigate the load and electricity supply. Multiple PCMs connected in series has attracted considerable research attention as this configuration has the potential to improve the thermal performance compared to single PCM storage. However, this technology has not yet been deployed in commercial CSP plants. One of the major restrictions is the lack of reliable thermophysical property data for high temperature PCMs. This study gives a broad review of the experimentally verified PCMs with melting temperatures from approximately 500 °C–700 °C, applicable to CSP systems. A further twelve PCM candidates, containing low-cost sodium and/or potassium salts, were identified in this study and their thermophysical properties were experimentally evaluated. It was found that nine of the new candidates can be used as PCMs.

Country
Australia
Keywords

phase change enthalpy, phase diagram, specific heat capacity, differential scanning calorimetry, phase change temperature, phase change material

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    32
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
32
Top 10%
Top 10%
Top 10%