Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable and Sustainable Energy Reviews
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Continuous cultivation of microalgae in photobioreactors as a source of renewable energy: Current status and future challenges

Authors: Shih-Hsin Ho; Apurav Krishna Koyande; Rambabu Krishnamoorthy; Fawzi Banat; Wei Hsin Chen; Wei Hsin Chen; Jo Shu Chang; +5 Authors

Continuous cultivation of microalgae in photobioreactors as a source of renewable energy: Current status and future challenges

Abstract

Abstract Microalgae are promising sustainable energy sources for biodiesel production due to their rapid photosynthesis growth rate and capacity to be cultivated in wastewater, seawater, or freshwater. Moreover, microalgae could complete the entire growth cycle via photosynthesis reactions that convert light energy into renewable energy. The closed photobioreactor, PBR is resistant to infection from uninhabited algae species and allows frequent monitoring of various factors such as temperature, light intensity, and pH during the cultivation phase. Thus, this study focuses on continuous cultivation technology which produces higher biomass productivity with sustainable energy-saving operation as compared to batch culture. High productivity of microalgae biomass tends to accumulate higher concentrations of lipid and carbohydrates composition which is essential for the production of biofuels. The energy balance of numerous microalgae-based biofuels was discussed, and it was discovered that the net-energy ratio was greater than 1, indicating that the process is both commercially feasible and environmentally friendly. This study also summarizes the most recent discoveries on continuous cultivation constraints through photobioreactors, PBRs as well as potential challenges to tackle in scaling up the continuous sustainable culture mechanism. The research gaps, market opportunities, and future development directions of continuous photobioreactor systems are discussed to explore future development opportunities. A continuous photobioreactor, architecture is recommended for a pilot-scale trial, as a cost-benefit comparison would be beneficial in commercializing the framework.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    165
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
165
Top 1%
Top 10%
Top 0.1%