Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable and Sustainable Energy Reviews
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cork Open Research Archive (CORA)
Article . 2021
License: CC BY NC ND
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Sea level rise will change estuarine tidal energy: A review

Authors: Danial Khojasteh; Matthew Lewis; Sasan Tavakoli; Maryam Farzadkhoo; Stefan Felder; Gregorio Iglesias; William Glamore;

Sea level rise will change estuarine tidal energy: A review

Abstract

Climate change induced sea level rise (SLR) is likely to impact estuarine hydrodynamics and associated processes, including tidal energy. In this study, a hierarchy of factors influencing the future of estuarine tidal energy resources is proposed based on their relevance to SLR. These include primary factors (e.g., tidal prism, tidal range, tidal current, tidal asymmetry), secondary factors (e.g., sediment transport), and tertiary factors (e.g., shifts in estuarine shape/landform). The existing uncertainty regarding SLR impacts on tidal energy resource is high, given the spatial variability of estuaries. SLR may cause tidal ranges or currents to strengthen or weaken, depending on estuarine shape and boundary conditions (e.g., presence or absence of levees and adjacent low-lying areas). To date, local site studies have not resulted in an overarching assessment of SLR effects on tidal energy resources and comparative studies encompassing different regions and estuary types are recommended in order to address the existing knowledge gaps and provide insights for policymakers and stakeholders. SLR implications to estuarine tidal energy resources may be particularly important as SLR-induced changes can alter the available resource within a renewable energy development's operational lifetime (-20-30 years for tidal stream devices and-120 years for tidal barrages). In this regard, broader environmental impacts, as well as technoeconomic assessments, are difficult to predict and long-term management decisions associated with harnessing the potential of tidal energy schemes within estuaries should be made with caution.

Country
Ireland
Related Organizations
Keywords

Renewable energy, Tidal dynamics, Tidal stream turbine, Climate change, Tidal barrage, Tidal power

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    48
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
48
Top 10%
Top 10%
Top 1%