
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
A review of high-solid anaerobic digestion (HSAD): From transport phenomena to process design
La digestion anaérobie à haute teneur en solides (HSAD) est une méthode attrayante d'élimination des déchets organiques pour la récupération de bioénergie et l'atténuation du changement climatique. Le développement de la HSAD est confronté à plusieurs défis tels que de faibles rendements en biogaz et en méthane, de faibles taux de réaction et une facilité d'inhibition du processus en raison de la faible diffusion de masse et des limites de mélange du processus. Par conséquent, les progrès récents de la HSAD sont examinés de manière critique en mettant l'accent sur les phénomènes de transport et la modélisation des processus. Plus précisément, le travail discute des phénomènes hydrodynamiques, des mécanismes biocinétiques, des simulations de réacteurs spécifiques à HSAD, des conceptions de réacteurs multi-étapes à la pointe de la technologie, des ramifications industrielles et des paramètres clés qui permettent un fonctionnement durable des processus HSAD. Des recherches supplémentaires sur de nouveaux matériaux tels que les bio-additifs, les adsorbants et les tensioactifs peuvent augmenter l'efficacité du processus HSAD, tout en assurant la stabilité. De plus, un outil de simulation générique est urgent pour permettre un meilleur couplage entre les phénomènes biocinétiques, l'hydrodynamique et le transfert de chaleur et de masse qui justifierait une mise à l'échelle du processus HSAD.
La digestión anaeróbica de alto contenido de sólidos (HSAD) es un método atractivo de eliminación de residuos orgánicos para la recuperación de bioenergía y la mitigación del cambio climático. El desarrollo de HSAD se enfrenta a varios desafíos, como los bajos rendimientos de biogás y metano, las bajas velocidades de reacción y la facilidad de inhibición del proceso debido a la baja difusión de masa y las limitaciones de mezcla del proceso. Por lo tanto, el progreso reciente en HSAD se revisa críticamente con un enfoque en los fenómenos de transporte y la modelización de procesos. Específicamente, el trabajo analiza los fenómenos hidrodinámicos, los mecanismos biocinéticos, las simulaciones de reactores específicos de HSAD, los diseños de reactores de múltiples etapas de última generación, las ramificaciones industriales y los parámetros clave que permiten el funcionamiento sostenido de los procesos de HSAD. La investigación adicional sobre materiales novedosos como bioaditivos, adsorbentes y tensioactivos puede aumentar la eficiencia del proceso HSAD, al tiempo que garantiza la estabilidad. Además, se necesita urgentemente una herramienta de simulación genérica para permitir un mejor acoplamiento entre los fenómenos biocinéticos, la hidrodinámica y la transferencia de calor y masa que justifique la ampliación del proceso HSAD.
High-solid anaerobic digestion (HSAD) is an attractive organic waste disposal method for bioenergy recovery and climate change mitigation. The development of HSAD is facing several challenges such as low biogas and methane yields, low reaction rates, and ease of process inhibition due to low mass diffusion and mixing limitations of the process. Therefore, the recent progress in HSAD is critically reviewed with a focus on transport phenomena and process modelling. Specifically, the work discusses hydrodynamic phenomena, biokinetic mechanisms, HSAD-specific reactor simulations, state-of-the-art multi-stage reactor designs, industrial ramifications, and key parameters that enable sustained operation of HSAD processes. Further research on novel materials such as bio-additives, adsorbents, and surfactants can augment HSAD process efficiency, while ensuring the stability. Additionally, a generic simulation tool is of urgent need to enable a better coupling between biokinetic phenomena, hydrodynamics, and heat and mass transfer that would warrant HSAD process scale-up.
الهضم اللاهوائي عالي الصلابة (HSAD) هو طريقة جذابة للتخلص من النفايات العضوية لاستعادة الطاقة الحيوية والتخفيف من آثار تغير المناخ. يواجه تطوير HSAD العديد من التحديات مثل انخفاض إنتاج الغاز الحيوي والميثان، وانخفاض معدلات التفاعل، وسهولة تثبيط العملية بسبب انخفاض انتشار الكتلة وقيود الخلط للعملية. لذلك، تتم مراجعة التقدم الأخير في HSAD بشكل نقدي مع التركيز على ظواهر النقل ونمذجة العمليات. على وجه التحديد، يناقش العمل الظواهر الهيدروديناميكية، وآليات الحركية الحيوية، ومحاكاة المفاعلات الخاصة بـ HSAD، وتصميمات المفاعلات متعددة المراحل الحديثة، والتداعيات الصناعية، والمعايير الرئيسية التي تمكن من التشغيل المستدام لعمليات HSAD. يمكن أن يؤدي إجراء المزيد من الأبحاث حول المواد الجديدة مثل الإضافات الحيوية والممتزات والمواد الخافضة للتوتر السطحي إلى زيادة كفاءة عملية HSAD، مع ضمان الاستقرار. بالإضافة إلى ذلك، هناك حاجة ملحة إلى أداة محاكاة عامة لتمكين اقتران أفضل بين الظواهر الحركية الحيوية، والديناميكا المائية، ونقل الحرارة والكتلة التي من شأنها أن تضمن توسيع نطاق عملية HSAD.
- University of Nottingham Malaysia Campus Malaysia
- Engineering and Physical Sciences Research Council United Kingdom
- Zhejiang Ocean University China (People's Republic of)
- Chinese Academy of Sciences China (People's Republic of)
- University of Glasgow United Kingdom
High-solid, Biogas, Organic chemistry, Quantum mechanics, Environmental science, Engineering, Mixing (physics), Anaerobic digestion, Heat transfer, Machine learning, SDG 13 - Climate Action, Mass transfer, SDG 7 - Affordable and Clean Energy, Waste management, Water Science and Technology, Physics, Anaerobic Digestion, Building and Construction, Computer science, Process (computing), Waste Treatment, Advancements in Water Purification Technologies, Integrated Management of Water, Energy, and Food Resources, Biochemical engineering, Chemistry, Operating system, Physical Sciences, Environmental Science, Process engineering, Anaerobic Digestion and Biogas Production, Methane
High-solid, Biogas, Organic chemistry, Quantum mechanics, Environmental science, Engineering, Mixing (physics), Anaerobic digestion, Heat transfer, Machine learning, SDG 13 - Climate Action, Mass transfer, SDG 7 - Affordable and Clean Energy, Waste management, Water Science and Technology, Physics, Anaerobic Digestion, Building and Construction, Computer science, Process (computing), Waste Treatment, Advancements in Water Purification Technologies, Integrated Management of Water, Energy, and Food Resources, Biochemical engineering, Chemistry, Operating system, Physical Sciences, Environmental Science, Process engineering, Anaerobic Digestion and Biogas Production, Methane
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).33 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
