
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Recent advances in model-based fault diagnosis for lithium-ion batteries: A comprehensive review

Lithium-ion batteries (LIBs) have found wide applications in a variety of fields such as electrified transportation, stationary storage and portable electronics devices. A battery management system (BMS) is critical to ensure the reliability, efficiency and longevity of LIBs. Recent research has witnessed the emergence of model-based fault diagnosis methods in advanced BMSs. This paper provides a comprehensive review on the model-based fault diagnosis methods for LIBs. First, the widely explored battery models in the existing literature are classified into physics-based electrochemical models and electrical equivalent circuit models. Second, a general state-space representation that describes electrical dynamics of a faulty battery is presented. The formulation of the state vectors and the identification of the parameter matrices are then elaborated. Third, the fault mechanisms of both battery faults (incl. overcharege/overdischarge faults, connection faults, short circuit faults) and sensor faults (incl. voltage sensor faults and current sensor faults) are discussed. Furthermore, different types of modeling uncertainties, such as modeling errors and measurement noises, aging effects, measurement outliers, are elaborated. An emphasis is then placed on the observer design (incl. online state observers and offline state observers). The algorithm implementation of typical state observers for battery fault diagnosis is also put forward. Finally, discussion and outlook are offered to envision some possible future research directions.
Comment: Submitted to Renewable and Sustainable Energy Reviews on 09-Jan-2024
- Swinburne University of Technology Australia
- Swinburne University of Technology Australia
Electrical Engineering and Systems Science - Systems and Control
Electrical Engineering and Systems Science - Systems and Control
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).12 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
