Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Renewable and Sustai...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Renewable and Sustainable Energy Reviews
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Aaltodoc Publication Archive
Article . 2025 . Peer-reviewed
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Ammonia as a sustainable fuel: Review and novel strategies

Authors: Qiang Cheng; Akram Muhammad; Ossi Kaario; Zeeshan Ahmad; Larmi Martti;

Ammonia as a sustainable fuel: Review and novel strategies

Abstract

Publisher Copyright: © 2024 The Authors Ammonia is increasingly recognized as a viable alternative fuel that could significantly reduce greenhouse gas emissions without requiring major modifications to existing engine technologies. However, its high auto-ignition temperature, slow flame speed, and narrow flammability range present significant barriers, particularly under high-speed combustion conditions. This review explores the potential of ammonia as a sustainable fuel for internal combustion engines, focusing on its advantages and challenge. The review draws on a wide range of studies, from NH3 production, application, to the combustion mechanisms, that explore various strategies for enhancing NH₃ combustion in both spark ignition and compression ignition engines. Fundamentals and key approaches discussed include using hydrogen and hydrocarbon fuels as combustion promoters, which have been shown to improve ignition and flame propagation. Literature on fuel injection strategies, such as port fuel injection, direct injection, and dual-fuel injection, are examined to highlight their influence on NH₃-air mixing and combustion efficiency. Furthermore, the review delves into advanced ignition technologies, such as low-temperature plasma ignition, turbulent jet ignition, and laser ignition, which are explored for the potential to overcome the ignition difficulties associated with NH₃. After a comprehensive analysis based on the literature, the intelligent liquid-gas twin-fluid co-injection system (iTFI) emerges as a promising approach, offering improved combustion stability and efficiency through better fuel-air mixture preparation. By synthesizing the existing research, this review outlines the progress made in NH₃ combustion and identifies areas where further study is needed to fully realize its potential as a sustainable fuel. Peer reviewed

Country
Finland
Related Organizations
Keywords

Sustainable transportation, Ammonia, Fuel-injection, Alternative fuels, Internal combustion engine, Low-temperature combustion

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Average
Average
Top 10%
Green
hybrid
Related to Research communities
Energy Research