Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Renewable and Sustai...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Renewable and Sustainable Energy Reviews
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Quantifying environmental learning and scaling rates for prospective life cycle assessment of e-ammonia production

Authors: Daniel Fozer; Mikołaj Owsianiak; Michael Zwicky Hauschild;

Quantifying environmental learning and scaling rates for prospective life cycle assessment of e-ammonia production

Abstract

The imperative of a widespread, climate-neutral industrial transition necessitates adopting sustainable-by-design e-ammonia production practices. However, as is the case with early-stage technologies, its full potential in decarbonization and substituting conventional infrastructure at higher manufacturing readiness levels remains unknown. While learning and scaling effects offer insights into future potentials through historical observations, a collection of learning-by-doing, learning-by-searching and scaling data is absent for emerging green transition-related technologies. This study addresses the knowledge gap by building on economic learning theory and combining it with process virtualization to develop an explorative and normative framework for (i) synthesizing environmental learning rates for first-of-a-kind (FOAK) technologies and (ii) using them in prospective life cycle assessment. We consecutively develop and scale 12 e-ammonia processes designing green hydrogen production, ammonia synthesis, and air separation units using ASPEN Plus® V11 software to construct environmental learning curves (R2> 0.95). The quantified environmental learning effects, harmonized with shared socioeconomic pathways, show the technology's comprehensive potential to evolve into an eco-efficient nth-of-a-kind production line following a 2.5 doubling of experience by 2050. The cumulative environmental progress is driven by a short technology doubling time and moderate to high 3.1-23.4% environmental learning and scaling rates. Prospective projections that involve learning and scaling effects in the foreground system markedly outperform scenarios that consider environmental progress solely in background life cycle inventories. Therefore, future-oriented sustainability assessments need to account for advancements in both foreground and background inventories simultaneously to support and guide eco-friendly technological developments effectively.

Country
Denmark
Related Organizations
Keywords

Green ammonia, Prospective life cycle assessment, /dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energy; name=SDG 7 - Affordable and Clean Energy, Power-to-ammonia, Environmental learning theory, Process synthesis and design, /dk/atira/pure/sustainabledevelopmentgoals/climate_action; name=SDG 13 - Climate Action, Shared socioeconomic pathways, /dk/atira/pure/sustainabledevelopmentgoals/responsible_consumption_and_production; name=SDG 12 - Responsible Consumption and Production

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
hybrid
Related to Research communities
Energy Research