Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Renewable and Sustai...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Renewable and Sustainable Energy Reviews
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Explainable artificial intelligence for energy systems maintenance: A review on concepts, current techniques, challenges, and prospects

A Review on Concepts, Current Techniques, Challenges, and Prospects
Authors: Mohammad Reza Shadi; Hamid Mirshekali; Hamid Reza Shaker;

Explainable artificial intelligence for energy systems maintenance: A review on concepts, current techniques, challenges, and prospects

Abstract

The rising demand for energy requires high investments in network extensions and renewable sources, alongside replacing inefficient systems. Smart maintenance is important in minimizing unscheduled outages, reducing costs, improving network security, and increasing equipment's life expectancy. The vast amount of data collected by sensors and measurements in energy networks makes it hard for humans to detect failures continuously. Thanks to recent breakthroughs in AI, the energy sector has boosted the use of intelligent algorithms in this field. Despite the widespread popularity and great results of machine learning (ML) models in many applications, they are mostly nevertheless considered "black boxes" as understanding their functionality and transparency in real-world applications is challenging. Explainable Artificial Intelligence (XAI) tackles this by making AI systems' decision-making processes transparent and interpretable. This review paper will not only make the roadmap clear but also ensure an in-depth awareness of the challenges, opportunities, and developments associated with this path by presenting two comprehensive taxonomies. Various XAI methods are compared; as an example, our findings show that SHAP offers high trustworthiness but is less suited for real-time use, while LIME provides faster solutions with lower trustworthiness. To the best of the authors' knowledge, this is the first survey that provides an overview of XAI methods for energy systems maintenance (ESM). It addresses challenges like integrating XAI with IoT-powered digital twins, balancing explainability with cybersecurity, and ensuring scalability while proposing solutions to enhance reliability and efficiency.

Country
Denmark
Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
hybrid
Related to Research communities
Energy Research