

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Towards equitable and inclusive energy systems for remote off-grid communities: A socio-technical assessment of solar power for village Helario in Tharparkar, Pakistan

Universal access to clean electricity (SDG7) in remote areas of the rural South remains a key challenge for economic growth, and has particular implications for equitable, inclusive and sustainable development. In Pakistan, techno-economic constraints in grid expansion for last-mile users, combined with the country’s high solar energy potential make off-grid solar energy generation a viable solution, provided its technological, social and economic implications are well-understood in terms of actual energy demands and designed for equitable distribution. This paper presents a socio-technical feasibility assessment for designing equitable and inclusive off-grid solar systems using the case-study of Helario village in Tharparkar, Pakistan, with a key focus on gender-specific benefits. A mixed-methods approach is used to conduct a baseline field assessment of existing energy sources, community needs, women’s access and energy use, affordability, future energy aspirations and social acceptability of renewable energy technologies. Results indicate gendered differences in mobility, education, everyday practices and income that have socio-economic implications, whereby women can benefit more from electrification, particularly when electricity is interlinked with access to clean water. Results are used to model, simulate and optimise a solar-battery mini-grid system for tiered and equitable energy access using CLOVER. Analysis shows that a system designed with a 10-year lifetime provides the lowest levelised cost of electricity and minimum emissions intensity, emphasising the need for long-term energy system planning. This paper serves as a demonstration for policymakers, project developers and rural communities for designing more equitable and inclusive energy systems with clear gendered implications for sustainable future access.
- Imperial College London United Kingdom
- University of East Anglia United Kingdom
- University of Cambridge United Kingdom
- University of Exeter United Kingdom
- Quaid-e-Awam University of Engineering, Science and Technology Pakistan
690, TJ807-830, Energy modelling, Gender equity, Renewable energy sources, Solar photovoltaic, 40 Engineering, 44 Human Society, 13 Climate Action, Energy systems, 4404 Development Studies, Socio-technical analysis, 7 Affordable and Clean Energy, Rural electrification
690, TJ807-830, Energy modelling, Gender equity, Renewable energy sources, Solar photovoltaic, 40 Engineering, 44 Human Society, 13 Climate Action, Energy systems, 4404 Development Studies, Socio-technical analysis, 7 Affordable and Clean Energy, Rural electrification
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).7 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10% visibility views 4 download downloads 1 - 4views1downloads
Data source Views Downloads University of East Anglia digital repository 2 0 Apollo 2 1


