Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Spectrochimica Acta ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Extraction, preparation and application of pigments from Cordyline fruticosa and Hylocereus polyrhizus as sensitizers for dye-sensitized solar cells

Authors: Abdul Amir H. Kadhum; Kamaruzzaman Sopian; Mahmoud A M Al-Alwani; Mahmoud A M Al-Alwani; Abu Bakar Mohamad; Norasikin Ahmad Ludin;

Extraction, preparation and application of pigments from Cordyline fruticosa and Hylocereus polyrhizus as sensitizers for dye-sensitized solar cells

Abstract

Current study employs mixture of chlorophyll-anthocyanin dye extracted from leaves of Cordyline fruticosa as new sensitizers for dye-sensitized solar cell (DSSCs), as well as betalains dye obtained from fruit of Hylocereus polyrhizus. Among ten pigments solvents, the ethanol and methanol extracts revealed higher absorption spectra of pigments extracted from C. fruticosa and H. polyrhizus respectively. A major effect of temperature increase was studied to increase the extraction yield. The results indicated that extraction temperature between 70 and 80°C exhibited a high dye concentration of each plant than other temperatures. The optimal temperature was around 80°C and there was a sharp decrease of dye concentration at temperatures higher than this temperature. According to experimental results, the conversion efficiency of DSSC fabricated by mixture of chlorophyll and anthocyanin dyes from C. fruticosa leaves is 0.5% with short-circuit current (Isc) of 1.3mA/cm-2, open-circuit voltage (Voc) of 0.62V and fill factor (FF) of 60.16%. The higher photoelectric conversion efficiency of the DSSC prepared from the extract of H. polyrhizus was 0.16%, with Voc of 0.5V, Isc of 0.4mA/cm-2 and FF of 79.16%. The DSSC based betalain dye extracted from fruit of H. polyrhizus shows higher maximum IPCE of 44% than that of the DSSCs sensitized with mixed chlorophyll-anthocyanin dye from C. fruticosa (42%).

Keywords

Cactaceae, Chlorophyll, Titanium, Photons, Cordyline, Surface Properties, Temperature, Spectrometry, X-Ray Emission, Electrons, Pigments, Biological, X-Ray Diffraction, Spectroscopy, Fourier Transform Infrared, Electrochemistry, Solar Energy, Solvents, Coloring Agents

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    35
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
35
Top 10%
Top 10%
Top 10%