Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ South African Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
South African Journal of Chemical Engineering
Article . 2022 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Homogenizer-intensified room temperature biodiesel production using heterogeneous palm bunch ash catalyst

Authors: Eko K. Sitepu; Yosefa Sembiring; Minto Supeno; Kerista Tarigan; Junedi Ginting; Justaman A. Karo-karo; Juliati Br. Tarigan;

Homogenizer-intensified room temperature biodiesel production using heterogeneous palm bunch ash catalyst

Abstract

Waste bio-based materials generated as by-products of palm oil mills have been successfully used as a heterogeneous catalyst in homogenizer-intensified biodiesel production. Palm bunch ash (PBA) contains potassium oxide as a major component that could catalyze palm oil to biodiesel at room temperature. The influential transesterification conditions such as ratio molar palm oil to methanol, rotational speed, catalyst weight and reaction time were investigated on biodiesel conversion. The highest conversion of 98.9% was obtained in presence of a ratio molar of 1:15, rotational speed of 4000 rpm, catalyst weight of 18 wt.% and 10 min reaction times. The catalytic stability test revealed that both catalyst amount and K2O concentration decreased after one reaction cycle. However, no calcination is required and the availability of PBA is abundantly in palm oil producer countries increasing its competitiveness to use as a heterogeneous catalyst. In addition, this process could save 6–98% of electricity consumption and 67–87% of reaction time compared to other methods.

Related Organizations
Keywords

Chemical engineering, Palm bunch ash, TP155-156, Biodiesel, Homogenizer, Heterogeneous catalyst

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Top 10%
gold