Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ South African Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
South African Journal of Chemical Engineering
Article . 2023 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Homogenizer-intensified amidation of free fatty acids in waste cooking oil for biodiesel production

Authors: Juliati Br. Tarigan; Binawati Ginting; Sabarmin Perangin-angin; Rodiah N. Sari; Parlin F. Sianipar; Eko K. Sitepu;

Homogenizer-intensified amidation of free fatty acids in waste cooking oil for biodiesel production

Abstract

Biodiesel production from waste cooking oil is a viable alternative both to satisfy renewable energy demand and utilize a low-cost feedstock. However, a preparatory procedure is required to reduce free fatty acid contained in waste cooking oil to a specific value which is time- and energy-extensive. Herein, a fast and non-catalytic amidation reaction performs at room temperature is established as an alternative method to reduce the free fatty acid level. The effect of the molar ratio of waste cooking oil to monoethanolamine, reaction time and rotational speed of homogenizer were investigated on the conversion of free fatty acid to alkanolamide compounds. The highest conversion of 95.9 ± 0.02% was achieved in presence of a molar ratio of 1:1.5, reaction time of 0.5 min and rotational speed of 5000 rpm. Further, a homogenizer was used to facilitate the transesterification reaction using an alkaline catalyst at room temperature. The conversion of waste cooking oil to biodiesel of 91.4 ± 0.2% was achieved after 5 min of reaction time. In terms of processing parameters, the non-catalytic amidation and alkaline base catalytic transesterification reaction assisted by a homogenizer device is a time-saved process as it could save 92% and 94% of reaction time compared to one- and two-steps method and was performed in ambient condition.

Keywords

Chemical engineering, TP155-156, Waste cooking oil, Biodiesel, Homogenizer, Alkanolamide

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
gold