Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ South African Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
South African Journal of Chemical Engineering
Article . 2023 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Enhancing performance of polymer-based microchannel heat exchanger with nanofluid: A computational fluid dynamics-artificial neural network approach

Authors: Chaiyanan Kamsuwan; Xiaolin Wang; Lee Poh Seng; Cheng Kai Xian; Ratchanon Piemjaiswang; Pornpote Piumsomboon; Kanit Manatura; +4 Authors

Enhancing performance of polymer-based microchannel heat exchanger with nanofluid: A computational fluid dynamics-artificial neural network approach

Abstract

Polymer-based heat exchangers can offer a promising solution for environmental sustainability due to their low energy consumption. The incorporation of microchannels and nanofluids further enhances the heat transfer performance of these heat exchangersIn this study, a polymer-based microchannel heat exchanger combined with nanofluid is simulated through the integration of an artificial neural network predictive model and a three-dimensional computational fluid dynamics model. This study unveils an advanced calculation that integrates artificial intelligence and readily-available computational software provided as the advanced calculation system. A statistical mathematics response surface method which data is used for correlating the calculation model is applied to obtain the design parameters between operating conditions and for optimal performance. The optimized results reveal that polymer-based microchannel heat exchanger combined with nanofluid is a promising innovation. The heat transfer improvement achieved a 12 % increase in the overall heat transfer coefficient by using TiO2/Water compared to Water. Moreover, a 1.03 performance index is obtained when CuO/Water nanofluid is used, a 66 horizontal parallel connecting of the polymer-based microchannel heat exchanger shows that the equipment can afford the same heat transfer performance of the metal-based microchannel heat exchanger in TiO2/Water nanofluid usage and implying a balance between heat transfer enhancement and energy consumption.

Keywords

Artificial neural network, Polymer-based microchannel, Nanofluid, Computational fluid dynamics, Chemical engineering, Heat exchanger, TP155-156, Performance optimization

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Average
Top 10%
gold