Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ UCL Discoveryarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
UCL Discovery
Article . 2022
Data sources: UCL Discovery
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Science Bulletin
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Science Bulletin
Article . 2022
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

City-level emission peak and drivers in China

Authors: Shan, Y; Guan, Y; Hang, Y; Zheng, H; Li, Y; Guan, D; Li, J; +3 Authors

City-level emission peak and drivers in China

Abstract

China is playing an increasing role in global climate change mitigation, and local authorities need more city-specific information on the emissions trends and patterns when designing low-carbon policies. This study provides the most comprehensive CO2 emission inventories of 287 Chinese cities from 2001 to 2019. The emission inventories are compiled for 47 economic sectors and include energy-related emissions for 17 types of fossil fuels and process-related emissions from cement production. We further investigate the state of the emission peak in each city and reveal hidden driving forces. The results show that 38 cities have proactively peaked their emissions for at least five years and another 21 cities also have emission decline, but passively. The 38 proactively peaked cities achieved emission decline mainly by efficiency improvements and structural changes in energy use, while the 21 passively emission declined cities reduced emissions at the cost of economic recession or population loss. We propose that those passively emission declined cities need to face up to the reasons that caused the emission to decline, and fully exploit the opportunities provided by industrial innovation and green investment brought by low-carbon targets to achieve economic recovery and carbon mitigation goals. Proactively peaked cities need to seek strategies to maintain the downward trend in emissions and avoid an emission rebound and thus provide successful models for cities with still growing emissions to achieve an emission peak.

Country
United Kingdom
Related Organizations
Keywords

China, 571, CO emissions, Drivers, City, Carbon Dioxide, CO2 emissions, Carbon, Climate change, Emission peak, Industry, Cities

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    262
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
262
Top 1%
Top 10%
Top 0.1%
Green