Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Science of The Total Environment
Article . 2006 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Source seasonality of polycyclic aromatic hydrocarbons (PAHs) in a subtropical city, Guangzhou, South China

Authors: Xiangdong Li; Jun Li; Gan Zhang; Gan Zhang; Xianzhi Peng; Guangxia Liu; Shihua Qi;

Source seasonality of polycyclic aromatic hydrocarbons (PAHs) in a subtropical city, Guangzhou, South China

Abstract

Mega-cities are large sources of air pollution on a regional base. Differences in energy structures, geographical settings and regional climate features lead to a large variety of air pollution sources from place to place. To understand the seasonality of air pollution sources is critical to precise emission inventories and a sound protection of human health. Based on a year-round dataset, the sources of PAHs in the air of Guangzhou were drawn by principal factor analysis (PCA) in combination with diagnostic ratios, and the seasonality of these sources were analyzed by PCA/MLR (multiple linear regressions) and discussed. The average total gaseous and particulate PAHs concentrations were 313 and 23.7 ng m(-3), respectively, with a higher concentration of vapor PAHs in summer and particulate PAHs in winter. In addition to vehicle exhaust, which contributed 69% of the particulate PAHs, coal combustion was still an important source and contributed 31% of the particulate PAHs. Relatively constant contribution from coal combustion was found through the year, implying that coal combustion in power plants was not a seasonally dependent source. Evaporation from contaminated ground may be an important source of light PAHs in summer, providing an average contribution of 68% to the total PAHs in this study. By comparing the PAH concentrations and meteorological parameters, we found that higher concentrations of particulate PAHs in winter resulted from enhanced vehicle exhaust under low temperature and accumulation of pollutants under decreased boundary layer, slower wind speed, and long-term dryness conditions. It is suggested that the typical subtropical monsoon climate in South China, cool and dry in winter, hot and humid in summer, may play a key role in controlling the source seasonality (by enhancing vehicle exhaust in winter, ground evaporation in summer), and hence the ambient concentrations of PAHs in the air.

Related Organizations
Keywords

Air Pollutants, China, Principal Component Analysis, Tropical Climate, Coal, Linear Models, Seasons, Cities, Polycyclic Aromatic Hydrocarbons, Environmental Monitoring, Power Plants, Vehicle Emissions

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    294
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
294
Top 1%
Top 1%
Top 1%