Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Science of The Total Environment
Article . 2013 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Phase change material applications in buildings: An environmental assessment for some Spanish climate severities

Authors: Germán Ferreira; M.D. Mainar-Toledo; Ignacio Zabalza Bribián; Ana M. López-Sabirón; Alfonso Aranda-Usón;

Phase change material applications in buildings: An environmental assessment for some Spanish climate severities

Abstract

This work proposes an environmental analysis based on the life cycle assessment (LCA) methodology. LCA was applied to determine if energy savings are large enough to balance the environmental impact caused during phase change material (PCM) manufacture and its installation on tiles. Inputs and outputs of each management stage have been defined and the inventory emissions were calculated by SIMAPRO v 7.3.2. Emissions were classified into several impact categories; climate change, human toxicity, acidification, ozone depletion, particulate matter formation and eutrophication. Three commercial PCMs, evaluated using five different Spanish weather climates, were studied to explore a wide range of conditions. The main results conclude that the use of PCM can reduce the overall energy consumption and the environmental impacts. This reduction is strongly influenced by the climate conditions and the PCM introduced.

Keywords

Meteorological Concepts, Construction Materials, Environment, Eutrophication, Spain, Toxicity Tests, Humans, Air Conditioning, Particulate Matter, Ozone Depletion

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    48
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
48
Top 10%
Top 10%
Top 10%