
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Insights into microbial community profiles associated with electric energy production in microbial fuel cells fed with food waste hydrolysate

Insights of microbial community profiles associated with electric energy production in microbial fuel cells (MFCs) fed with food waste hydrolysate (FWH) were investigated in this study. High power density of 0.173 W/m2 was obtained from FWH which was produced from food waste after the pretreatment with fungal mash at an influent COD concentration of 1.2 g/L. The main genera in the MFCs fed with FWH were found to be Rummeliibacillus, Burkholderia, Enterococcus and Clostridium in anodic biofilms, leading to an electrogenesis efficiency of 0.977 kWh/kg COD higher than those obtained in MFCs with single carbon source feed. The key members in the anodic community responsible for electrogenesis were conceptually identified with their metabolic interactions in MFCs fed with FWH. It appeared that the syntrophic cooperation of fermentative species with exoelectrogens played an essential role in the generation of electric energy via specific microbes in anodic biofilm. The power produced from FWH was positively associated with microbial diversity, intermediate community evenness and abundance of functional genes for bioelectrogenesis.
- Huaqiao University China (People's Republic of)
- Huaqiao University China (People's Republic of)
- Advanced Biotechnology Center Italy
- Nanyang Technological University Singapore
- Advanced Biotechnology Center Italy
Biological Oxygen Demand Analysis, Bioelectric Energy Sources, Microbiota, 590, Waste Disposal, Fluid, :Environmental engineering [Engineering], Food Waste Hydrolysate, Food, Biofilms, Microbial Fuel Cells, Engineering::Environmental engineering, Electrodes
Biological Oxygen Demand Analysis, Bioelectric Energy Sources, Microbiota, 590, Waste Disposal, Fluid, :Environmental engineering [Engineering], Food Waste Hydrolysate, Food, Biofilms, Microbial Fuel Cells, Engineering::Environmental engineering, Electrodes
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).36 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
