Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Science of The T...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Science of The Total Environment
Article . 2020 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Science of The Total Environment
Article
License: CC BY NC ND
Data sources: UnpayWall
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Rising vegetation activity dominates growing water use efficiency in the Asian permafrost region from 1900 to 2100

Authors: Fenghui Yuan; Jianzhao Liu; Yunjiang Zuo; Ziyu Guo; Nannan Wang; Changchun Song; Zongming Wang; +6 Authors

Rising vegetation activity dominates growing water use efficiency in the Asian permafrost region from 1900 to 2100

Abstract

Permafrost play an important role in regulating global climate system. We analyzed the gross primary productivity (GPP), net primary productivity (NPP), and evapotranspiration (ET) derived from MODIS and three earth system models participated in the Coupled Model Inter-comparison Project Phase 6 (CMIP6) in the Asian permafrost region. The water use efficiency (WUE) was further computed. The simulated GPP, NPP, and ET show slightly increasing trends during historical period (1900-2014) and strong increasing trends in projection period (2015-2100), and projected impacts of climate change on all variables are greater under high-emission scenarios than low-emission scenarios. Further analysis revealed higher increases in GPP and NPP than that of ET, indicating that vegetation carbon sequestration governs the growing WUE under historical and projected periods in this region. The GPP, NPP and ET showed higher changing rates in western, central and southeast areas of this region, and WUE (WUEGPP, and WUENPP) shows the similar spatial pattern. Compared to MODIS-derived GPP, NPP, and ET during 2000-2014, Earth system models yield the best estimates for NPP, while slight underestimations for GPP and ET, and thus slight overestimations for WUEGPP and WUENPP. This study highlights the predominant role of vegetation activity in regulating regional WUE in Asian permafrost region under future climate change. Vegetation domination of the growing water use efficiency implies that the permafrost region may continue acting efficiently in sequestrating atmospheric carbon in terms of water consumption throughout the 21st century.

Related Organizations
Keywords

Climate Change, Permafrost, Water, Models, Theoretical, Carbon Cycle, Ecosystem

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    31
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
31
Top 10%
Average
Top 10%
hybrid