
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Effect of gas atmosphere on hydrogen production in microbial electrolysis cells

pmid: 33310211
Inert gas is often used in the deoxygenation of microbial electrolysis cells (MECs) to maintain growth and viability of anaerobes. However, the effects of the gas atmosphere on hydrogen production and microbial community of MECs are often neglected. Here, the performances and biofilm microbiomes of MECs pre-sparged with different gases were compared. MECs pre-sparged with argon gas (Ar) yielded more hydrogen (3.73 ± 0.13 mol-H2/mol-acetate) and a higher hydrogen production rate (2.99 ± 0.17 L-H2/L-reactor-day) than MECs pre-sparged with N2 (3.41 ± 0.13 mol-H2/mol-acetate and 2.27 ± 0.28 L-H2/L-reactor-day, respectively). Microbiome analysis indicated that the relative abundance of Geobacter increased from 59.25% to 77.79% when the gas atmosphere in MECs shifted from N2 to Ar. Hydrogen production may have been catalyzed by nitrogenase from Geobacter and photosynthetic bacteria in MECs pre-sparged with Ar. These findings suggested that the gas atmosphere substantially influences the microbiome of anode biofilms and Ar sparging is most effective for enhancing hydrogen production in MECs.
- Harbin Institute of Technology China (People's Republic of)
- Harbin Institute of Technology China (People's Republic of)
- State Key Laboratory of Urban Water Resources and Water Environment China (People's Republic of)
- State Key Laboratory of Urban Water Resources and Water Environment China (People's Republic of)
Atmosphere, Bioelectric Energy Sources, Electrolysis, Gases, Electrodes, Hydrogen
Atmosphere, Bioelectric Energy Sources, Electrolysis, Gases, Electrodes, Hydrogen
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).7 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
