
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Study on the correlation between Fe/Ti forms and reaction activity in high-alumina coal fly ash

pmid: 34147793
High-alumina coal fly ash (HAFA) is an important aluminum and silicon resource. In the process of preparing aluminum-silicon materials from HAFA, the influence of impurity elements on its performance must be considered. In this work, the occurrence state of impurities in HAFA, micro morphology, and the bond energy of different impurity coordination were studied. Sulfuric acid leaching method and density functional theory were used to study the leaching behavior of impurities to verify the difficulty of removing different impurity elements. The results show that iron existed in the form of magnetic particles (34.78%), amorphous phase (49.24%), and crystalline phase (15.96%) in HAFA. Titanium mainly existed in amorphous phase (29.34%) and crystalline phase (69.4%). In sulfuric acid leaching, titanium was more difficult to leach, and the content of TiO2 decreased from 2.30% to 2.25%, whereas that of Fe2O3 decreased from 1.50% to 0.86%. The actual leaching behavior of impurity elements was consistent with the simulation results, with more energy required to remove Ti than Fe. These studies of impurity elements in HAFA will provide theoretical support for the preparation of aluminum-silicon materials.
- Wuhan Polytechnic University China (People's Republic of)
- Chinese Academy of Sciences China (People's Republic of)
- University of Chinese Academy of Sciences China (People's Republic of)
- Wuhan University of Science and Technology China (People's Republic of)
- Chinese Academy of Sciences United States
Titanium, Coal, Aluminum Oxide, Coal Ash, Aluminum
Titanium, Coal, Aluminum Oxide, Coal Ash, Aluminum
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).9 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
