
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Warming reduces the production of a major annual forage crop on the Tibetan Plateau

pmid: 34375235
Climate warming has been proposed to increase primary production of natural grasslands in cold regions. However, how climate warming affects the production of artificial pastures in cold regions remains unknown. To address this question, we used open-top chambers to simulate warming in a major artificial pasture (forage oat) on the cold Tibetan Plateau for three consecutive years. Surprisingly, climate warming decreased aboveground and belowground biomass production by 23.1%-44.8% and 35.0%-46.5%, respectively, without a significant impact on their ratio. The adverse effects on biomass production could be attributed to the adverse effects of high-temperatures on leaf photosynthesis through increases in water vapor pressure deficit (by 0.05-0.10 kPa), damages to the leaf oxidant system, as indicated by a 46.6% increase in leaf malondialdehyde content, as well as reductions in growth duration (by 4.7-6.7 days). The adverse effects were also related to exacerbated phosphorus limitation, as indicated by decreases in soil available phosphorus and plant phosphorus concentrations by 31.9%-40.7% and 14.3%-49.4%, respectively, and increases in the plant nitrogen: phosphorus ratio by 19.2%-108.3%. The decrease in soil available phosphorus concentration could be attributed to reductions in soil phosphatase activities (by 9.6%-18.5%). The findings of this study suggest an urgent need to advance agronomic techniques and cultivate more resilient forage genotypes to meet the increasing demand of forage for feeding livestock and to reduce grazing damage to natural grasslands on the warming-sensitive Tibetan Plateau.
- Chinese Academy of Sciences China (People's Republic of)
- Southeast University China (People's Republic of)
- Chinese Academy of Sciences China (People's Republic of)
- Southeast University China (People's Republic of)
- Northern Arizona University United States
Plants, Tibet, Grassland, Soil, Biomass, Photosynthesis
Plants, Tibet, Grassland, Soil, Biomass, Photosynthesis
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).10 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
