Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Science of The Total Environment
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Recent advances, current issues and future prospects of bioenergy production: A review

Authors: Tianqi, Liu; Pengyun, Miao; Yang, Shi; Kuok Ho Daniel, Tang; Pow-Seng, Yap;

Recent advances, current issues and future prospects of bioenergy production: A review

Abstract

With the immense potential of bioenergy to drive carbon neutrality and achieve the climate targets of the Paris Agreement, this paper aims to present the recent advances in bioenergy production as well as their limitations. The novelty of this review is that it covers a comprehensive range of strategies in bioenergy production and it provides the future prospects for improvement. This paper reviewed more than 200 peer-reviewed scholarly papers mainly published between 2010 and 2021. Bioenergy is derived from biomass, which, through thermochemical and biochemical processes, is converted into various forms of biofuels. This paper reveals that bioenergy production is temperature-dependent and thermochemical processes currently have the advantage of higher efficiency over biochemical processes in terms of lower response time and higher conversion. However, biochemical processes produce more volatile organic compounds and have lower energy and temperature requirements. The combination of the two processes could fill the shortcomings of a single process. The choices of feedstock are diverse as well. In the future, it can be anticipated that continuous technological development to enhance the commercial viability of different processes, as well as approaches of ensuring their sustainability, will be among the main aspects to be studied in greater detail.

Related Organizations
Keywords

Paris, Temperature, Carbon, Biofuels, Biomass

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    41
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
41
Top 10%
Top 10%
Top 1%