Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Science of The Total Environment
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Ecosystem service deficits of European cities

Authors: Thomas, Elliot; Benjamin, Goldstein; Erik, Gómez-Baggethun; Vânia, Proença; Benedetto, Rugani;

Ecosystem service deficits of European cities

Abstract

Climate change and biodiversity loss are two pressing global environmental challenges that are tightly coupled to urban processes. Cities emit greenhouse gases through the consumption of materials and energy. Urban expansion encroaches on local habitats, while urban land teleconnections simultaneously degrade distant ecosystems. These processes decrease the supply of and increase the demand for ecosystem services inside and outside urban areas. Most cities are in a state of ecosystem services deficit, whereby demand exceeds local supply of ecosystem services. Methods to quantify this deficit by capturing multi-scale and multi-level ecological exchanges are incipient, leaving scholars with a partial understanding of the environmental impacts of cities. This paper deploys a novel method to simulate future urban supplies and demands of two key ecosystem services needed to combat climate change and biodiversity loss - global climate regulation and global habitat maintenance. Applying our model to eight representative European cities, we project growing ecosystems deficits (demand exceeds supply) between 8% and 214% in global climate regulation and 11% and 431% in global habitat maintenance between 2020 and 2050. Variation between cities stems from differing dietary patterns and electricity mixes, which have large implications for ecosystems outside the city. To combat these losses, urban sustainability strategies should complement local restoration with changes to local consumption alongside promoting remote ecological restoration to tackle the multi-level environmental impacts of cities.

Keywords

Conservation of Natural Resources, Climate Change, Biodiversity, Sustainable Growth, Cities, Ecosystem

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Top 10%
Top 10%
Top 10%