
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Physiological factors contribute to increased competitiveness of grass relative to sedge, forb and legume species under different N application levels


Antonio DiTommaso

Anna S. Westbrook

Antonio DiTommaso

Anna S. Westbrook
pmid: 37788779
In alpine grasslands, increased N deposition is increasing the dominance of grasses relative to other functional types according to our previous study Shen et al. (2022). However, the mechanisms that drive this compositional change are not fully understood. We measured the effects of 4-6 years' N addition to simulate N deposition at rates of 0 (CK), 8 (N1), 24 (N2), 40 (N3), 56 (N4), and 72 (N5) kg N ha-1 year-1 on dominant representatives of four functional types, Leymus secalinus (grass), Carex capillifolia (sedge), Potentilla multifidi (non-leguminous forb), and Medicago ruthenica (legume), in the alpine grassland on the Qinghai-Tibetan Plateau (QTP). In-situ experiment showed that N addition increased aboveground biomass in L. secalinus but had negative or neutral effects on aboveground biomass in the other species. Consistent with this finding, N addition increased net photosynthesis, chlorophyll content, and rubisco activity in L. secalinus with less positive effects on the other species. Nitrogen addition increased leaf N content in L. secalinus and C. capillifolia and reduced leaf non-structural carbohydrate content in all four species. In L. secalinus, the highest N addition rate (N5) reduced MDA content, a marker of oxidative stress, by enhancing antioxidant enzyme activity. Overall, our findings suggested that physiological factors can contribute to increased competitiveness of grass relative to sedge, forb and legume species under high N application levels. The rapid growth of this grass species reduces resource availability to non-grass species, increasing its dominance in the alpine meadow.
- Radboud University Nijmegen Netherlands
- Beijing Normal University China (People's Republic of)
- Chinese Academy of Forestry China (People's Republic of)
- Shanxi Agricultural University China (People's Republic of)
- Research Institute of Forestry China (People's Republic of)
Soil, Vegetables, Medicago, Biomass, Poaceae, Grassland, Environmental Sciences
Soil, Vegetables, Medicago, Biomass, Poaceae, Grassland, Environmental Sciences
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).7 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
