Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Radboud Repositoryarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Radboud Repository
Article . 2024
Data sources: Radboud Repository
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Science of The Total Environment
Article . 2024 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 4 versions
addClaim

Physiological factors contribute to increased competitiveness of grass relative to sedge, forb and legume species under different N application levels

Authors: Hao Shen; Shikui Dong; orcid Antonio DiTommaso;
Antonio DiTommaso
ORCID
Harvested from ORCID Public Data File

Antonio DiTommaso in OpenAIRE
orcid Anna S. Westbrook;
Anna S. Westbrook
ORCID
Harvested from ORCID Public Data File

Anna S. Westbrook in OpenAIRE
Shuai Li; Hanzhong Zheng; Yangliu Zhi; +3 Authors

Physiological factors contribute to increased competitiveness of grass relative to sedge, forb and legume species under different N application levels

Abstract

In alpine grasslands, increased N deposition is increasing the dominance of grasses relative to other functional types according to our previous study Shen et al. (2022). However, the mechanisms that drive this compositional change are not fully understood. We measured the effects of 4-6 years' N addition to simulate N deposition at rates of 0 (CK), 8 (N1), 24 (N2), 40 (N3), 56 (N4), and 72 (N5) kg N ha-1 year-1 on dominant representatives of four functional types, Leymus secalinus (grass), Carex capillifolia (sedge), Potentilla multifidi (non-leguminous forb), and Medicago ruthenica (legume), in the alpine grassland on the Qinghai-Tibetan Plateau (QTP). In-situ experiment showed that N addition increased aboveground biomass in L. secalinus but had negative or neutral effects on aboveground biomass in the other species. Consistent with this finding, N addition increased net photosynthesis, chlorophyll content, and rubisco activity in L. secalinus with less positive effects on the other species. Nitrogen addition increased leaf N content in L. secalinus and C. capillifolia and reduced leaf non-structural carbohydrate content in all four species. In L. secalinus, the highest N addition rate (N5) reduced MDA content, a marker of oxidative stress, by enhancing antioxidant enzyme activity. Overall, our findings suggested that physiological factors can contribute to increased competitiveness of grass relative to sedge, forb and legume species under high N application levels. The rapid growth of this grass species reduces resource availability to non-grass species, increasing its dominance in the alpine meadow.

Country
Netherlands
Related Organizations
Keywords

Soil, Vegetables, Medicago, Biomass, Poaceae, Grassland, Environmental Sciences

Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Average
Top 10%
Green
Related to Research communities
Netherlands Research Portal