Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Science of The Total Environment
Article . 2024 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mixed effects of climate and species richness on aboveground carbon stock in subtropical Atlantic forests

Authors: Júlio R. Bastos; Elivane S. Capellesso; Vinicius Marcilio-Silva; Victor P. Zwiener; Alexander C. Vibrans; Márcia C.M. Marques;

Mixed effects of climate and species richness on aboveground carbon stock in subtropical Atlantic forests

Abstract

Tropical forests are global biodiversity hotspots and are crucial in the global carbon (C) cycle. Understanding the drivers of aboveground carbon stock (AGC) in a heterogeneous and biodiverse system can shed light on the processes underlying the relationship between biodiversity and carbon accumulation. Here, we investigate how biodiversity, environment, and landscape structure affect AGC. We examined such associations in 349 plots comprising over 95,346 km2 the Atlantic Forest of southern Brazil, encompassing three forest types: Dense Ombrophylous Forest (DF), Mixed Ombrophylous Forest (MF), and Seasonal Deciduous Forest (SF). Each plot was described by environmental variables, landscape metrics, and biodiversity (species richness and functional diversity). We used diversity, environmental, and landscape variables to build generalized linear mixed models and understand which can affect the forest AGC. We found that species richness is associated positively with AGC in all forest types, combined and separately. Seasonal temperature and isothermality affect AGC in all forest types; additionally, stocks are positively influenced by annual precipitation in SF and isothermality in MF. Among landscape metrics, total fragment edge negatively affects carbon stocks in MF. Our results show the importance of species diversity for carbon stocks in subtropical forests. The climate effect was also relevant, showing the importance of these factors, especially in a world where climate change tends to affect forest stock capacity negatively.

Keywords

Tropical Climate, Climate Change, Biodiversity, Forests, Brazil, Carbon, Carbon Cycle, Trees

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Related to Research communities
Energy Research