Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Science of The Total Environment
Article . 2024 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Modeling the recent drought and thinning impacts on energy, water and carbon fluxes in a boreal forest

Authors: Mousong, Wu; Shengnan, Zhu; Hongxing, He; Xinyao, Zhang; Chunyu, Wang; Sien, Li; Wenxin, Zhang; +1 Authors

Modeling the recent drought and thinning impacts on energy, water and carbon fluxes in a boreal forest

Abstract

Globally, boreal forests act as important carbon sinks, however, drought and forest management could substantially alter the sink strength, though the controlling mechanisms of drought and management remain unclear. In this study, we combined the detailed process-based CoupModel with multiple measurements to study the impacts of recent drought and forest thinning on a boreal forest during 2018-2021. CoupModel after calibration showed high ability to represent the dynamics of long-term net ecosystem exchange and its responses to environmental changes. The model simulation showed that the canopy temperature exacerbated the dominant role in regulating the boreal forest growth during the 2018 extreme drought year with slight increase in the annual mean net carbon uptake by 76.65 g C/m2/yr compared to 2017. The posterior model simulations ensemble suggested that thinning of trees in 2019-2020 caused the boreal forest in 2020 to be a sink to slight source ([-229.95, 94.90] g C/m2/yr, 90 % confidence interval), while the observations depicted a small source (69.35 g C/m2/yr). Moreover, rapid recovery of the boreal forest to a carbon sink was found in 2021, though remaining smaller than the carbon sink in 2017. Overall, the negative impacts from drought and harvest (2018-2021) were found to have offset the positive impacts from climate by 8 % - 92 %, on the net carbon uptake. This study highlights the resilience of boreal forests as carbon sink and provides new insights into the boreal forests' responses to both climate change and management.

Related Organizations
Keywords

Carbon Sequestration, Climate Change, Taiga, Forestry, Forests, Carbon, Droughts, Carbon Cycle, Trees, Environmental Monitoring

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Related to Research communities
Energy Research