Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Sustainable Cities a...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Sustainable Cities and Society
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Experimental study and steady-state model of a novel plate loop heat pipe without compensation chamber for CPU cooling

Authors: Sikai Zou; Sheng Du; Peilin Hou; Quan Zhang; Chang Yue;

Experimental study and steady-state model of a novel plate loop heat pipe without compensation chamber for CPU cooling

Abstract

Abstract In this study, a new type of loop heat pipe (LHP) without compensation chamber is designed and manufactured, meanwhile the liquid line is fitted with a sintered wick to enhance startup and steady operation capacity. Specifically, the thermal characteristics of the LHP are studied experimentally. The results show that the LHP can start up smoothly at any heat load and the highest temperature of LHP does not exceed 90 °C. The fluid at the liquid line is subcooled, which is beneficial for the startup and steady operation of LHP. When the heat load is in range of 10 W to 50 W, the LHP works at variable conductance mode, and the system thermal resistance and the loop thermal resistance both decrease sharply with the increasing heat load. When the heat load is in range of 50 W to 150 W, the LHP enters a constant conductance mode, and the system thermal resistance and the loop thermal resistance remain basically constant. Besides, the steady-state model of LHP used to predict the operating temperature of LHP is established. The simulation results were compared with the experimental data, and the maximum relative error of evaporator, vapor, condenser outlet and liquid line wick inlet temperature are less than 15%.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Top 10%
Top 10%
Top 10%