
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Smart regulation and efficiency energy system for street lighting with LoRa LPWAN

Abstract Public lighting installations represent an important consumption in smart cities. Therefore, it is necessary to implement energy saving solutions. In this sense, the use of smart meters (SM) provides a fundamental tool in the development of energy saving systems, which require monitoring and control in real time. The information flow generated requires an efficient communication system. Long Range (LoRa) protocol sends information across long distances with very low energy consumption. For this reason, it is especially interesting to implement in street light (SL) installations. This research designs a control, monitoring and energy saving system for SLs composed of three devices: Gateway for Street Lights System (GWSLS), Operating and Monitoring Device for Street Lights (OMDSL), and Illumination Level Device (ILD). Street Lights Regulation (SLR) algorithm was developed to dynamically control the lighting level. Lighting levels are selected using the Artificial Bee Colony (ABC) optimization algorithm, which is fast, reliable and accurate. Measured data is sent to the GWSLS gateway by the OMDSLs installed with the LoRa network and uploaded to the cloud using Firebase.
- University of Jaén Spain
- University of Jaén Spain
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).36 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
