
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Understanding the interaction between groundwater and large-scale underground hot-water tanks and pits

Abstract In view of the urgent need for energy efficiency measures, renewables-based district heating (R-DH) can prove an efficient approach to meet the heating demand in cities whereby locally-available renewable resources are exploited. Yet, the renewables experience intermittency, which might lead to seasonal mismatch between heat supply and demand. Therefore, large-scale seasonal thermal energy storage (STES) systems are often envisioned as key elements in R-DH. Given their large volumes, these systems are often installed underground whereby groundwater tables are expected to lead to twofold impacts due to the TES-groundwater interaction. This work reports the development of models for the planning and optimization of STES and, then, conducts a calibration study to attain credibility in the models. Next, it examines the planning of STES under such unfavorable hydrogeological conditions whereby a groundwater flow is anticipated. The results indicate that Darcy flow plays a significant role in increasing the thermal losses that result in increasing groundwater temperature. Therefore, it becomes crucial to provide protective measures to maintain acceptable groundwater quality prescribed by national standards. Hence, the work investigates the role of cut-off wall distance and TES insulation quality to mitigate the TES thermal losses, increase the TES efficiency and reduce the groundwater temperature.
- University of Innsbruck Austria
Groundwater flow, Large-scale thermal energy storage, Renewable district heating, Planning and construction, TES efficiency, Special geotechnical works
Groundwater flow, Large-scale thermal energy storage, Renewable district heating, Planning and construction, TES efficiency, Special geotechnical works
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).16 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
