Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainable Cities a...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainable Cities and Society
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
VBN
Article . 2024
Data sources: VBN
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A cooperative resilience-oriented planning framework for integrated distribution energy systems and multi-carrier energy microgrids considering energy trading

Authors: Vahid Sabzpoosh Saravi; Mohsen Kalantar; Amjad Anvari-Moghaddam;

A cooperative resilience-oriented planning framework for integrated distribution energy systems and multi-carrier energy microgrids considering energy trading

Abstract

Integrated distribution systems (IDSs) and multi-carrier energy microgrids (MCEMs) can play a crucial role in enhancing distribution energy systems’ overall efficiency and flexibility. By cascading energy usage and cooperating through energy trading, IDSs and MCEMs can reduce overall system costs and provide more flexibility for system operators. Adding resilience to the planning problem of IDSs can reduce planning costs in the long term, as proactive preparedness is key to coping with high-impact rare (HR) events. Adding resilience to the planning problem of IDSs can reduce the planning costs in the long term since proactive preparedness is a key necessity to cope with high-impact rare (HR) events. This paper proposes a resilience-oriented stochastic tri-level and two-stage cooperative expansion planning of IDSs and MCEMs, considering energy trading between IDSs and MCEMs. The first stage comprises two levels; the first level minimizes the investment and operation costs of IDSs and MCEMs, while the second level desires to maximize the energy exchange profit for MCEMs and thus reduce the overall costs. The second stage includes the third level problem involving two objective functions: resilience cost minimization and resilience index (RI) maximization. The multi-objective problem in the second stage is converted into a single-objective problem using the min–max regret method. The DC and AC configurations for the power distribution system (PDS) and power microgrids (PMGs) are studied to identify the optimal configuration of these networks in the expansion planning problem. A new framework is proposed based on an aggregator-agent splitting solution using the aggregator coupling coordinator unit (ACC) responsible for coordinating IDNs and MCEMs. The studied large-scale complex optimization problem is efficiently solved computationally by introducing a combined adaptive dynamic programming (ADP) and linearized alternating direction method of multipliers with parallel splitting (LADMMPSAP) algorithm. Three cases are studied to demonstrate the effectiveness of the proposed model and method. The results depict that MCEMs help reduce expansion planning costs and improve the system’s resilience. Adding resilience to the expansion planning problem enhances the resilience of the whole system and simultaneously reduces the costs by 2.7%. The expansion planning costs for the AC and DC configuration are close, and the AC is the optimal choice in all case studies. By increasing the planning horizon from 5 to 10 years, DC will be the optimal solution since network reinforcement costs and power losses are significantly lower.

Country
Denmark
Keywords

DC power distribution system, Integrated energy systems, /dk/atira/pure/sustainabledevelopmentgoals/industry_innovation_and_infrastructure; name=SDG 9 - Industry, Innovation, and Infrastructure, Resilience-oriented planning, Multi-carrier energy microgrid, /dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energy; name=SDG 7 - Affordable and Clean Energy, Cooperative planning framework, /dk/atira/pure/sustainabledevelopmentgoals/partnerships; name=SDG 17 - Partnerships for the Goals

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Average
Average
Top 10%
Green
hybrid