
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Optimizing the technical and economic value of energy storage systems in LV networks for DNO applications

Electrical energy production from renewable energy sources and electrification of consumer energy demand are developments in the ongoing energy transition. These developments urge the demand for flexibility in low voltage distribution networks, on the one hand caused by the intermittency of renewable energy sources, and on the other hand by the high power demand of battery electric vehicles and heat pumps. One of the foremost ways to create flexibility is by using energy storage systems. This paper proposes a method to first optimize the siting, power and capacity rating, technology, and operation of energy storage systems based on the technical and economic value. Secondly the method can be used to make cost- and time-based network planning decisions between network upgrades and network upgrade deferral by energy storage systems. To demonstrate the proposed method, study cases are analyzed of five low voltage distribution networks with different penetrations of photovoltaics, heat pumps and battery electric vehicles. The optimal energy storage systems in the study cases are: flow batteries sited at over 50% of the cable length with a high capacity rating per euro. With the current state of energy storage system development, network upgrade deferral is up to 61% cheaper than network upgrades in the study cases. The energy storage systems can offer additional value by reducing the peak loading of the medium voltage grid which is not taken into account in this research.
- Eindhoven University of Technology Netherlands
Optimization, Network upgrade deferral, Energy storage, Sustainability and the Environment, Energy Engineering and Power Technology, Power system planning, Control and Systems Engineering, Renewable Energy, Electrical and Electronic Engineering
Optimization, Network upgrade deferral, Energy storage, Sustainability and the Environment, Energy Engineering and Power Technology, Power system planning, Control and Systems Engineering, Renewable Energy, Electrical and Electronic Engineering
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).19 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
