
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
MPC-based control for a stand-alone LVDC microgrid for rural electrification

handle: 11368/3025044 , 11311/1232752
Electricity access in developing countries, where the availability of public distribution grids is still poor, is considered a key factor for improvement of people life conditions. In these situations, the lack of a reliable grid can be mitigated by the introduction of stand-alone DC microgrids, including small Photovoltaic (PV) generators and storage devices. This paper focuses on optimal energy management and power supply reliability of such a microgrid. In particular, a Model-Predictive-Control (MPC) - based control system is introduced to optimally manage storage devices and coordinate load shedding actions. Additionally, an Artificial-Neural-Network (ANN) - based predictor is introduced to manage unpredictable solar irradiance and temperature variations. The availability of reliable adaptive forecasts provided by the ANN-based predictor increases the efficiency of the optimization performed by the MPC-based control over the prediction horizon, avoiding the well-known issues related to optimization performed on unreliable forecast. In this paper, the proposed control approach is detailed for a specific case study and its advantages with respect to traditional controller algorithms are highlighted by comprehensive numerical simulations. The presented results highlight that the proposed MPC controller provides a substantial increment in power supply reliability with respect to standard controls, especially for priority loads. This is obtained at the expense of an increased battery stress, which is acceptable for electricity access applications where power supply reliability is usually the foremost need.
- University of Trieste Italy
- University of Jijel Algeria
- University of Jijel Algeria
- Polytechnic University of Milan Italy
Photovoltaic generation, Microgrid, LVDC, Neural network, LVDC; Microgrids; Model predictive control; Neural networks; Photovoltaic generation; Rural electrification, Model predictive control, Microgrids, Rural electrification, Neural networks
Photovoltaic generation, Microgrid, LVDC, Neural network, LVDC; Microgrids; Model predictive control; Neural networks; Photovoltaic generation; Rural electrification, Model predictive control, Microgrids, Rural electrification, Neural networks
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).16 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
