
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Smart energy approaches for carbon abatement: Scenario designs for Chile's energy transition

handle: 11250/3099458
This study develops scenarios aiming to transition the Chilean energy system in 2050 to 100% renewable energy; taking into account local resource potentials, demands, cross-sectoral integration of the electricity, heating, transport, and industrial sectors, and synergies in their related infrastructures. The energy system model EnergyPLAN is used to simulate the hourly operation of the energy system. The relationship between potential CO2 emissions reductions and relative costs is estimated using marginal abatement cost curves with the EPLANoptMAC tool to assess the optimal sequence of capacity expansion and carbon abatement alternatives. The analysis demonstrates that it is possible to carry out this transition from a technical perspective more efficiently than what is proposed with current national scenarios while still aligning with climate neutrality targets; and that, in different phases of the Chilean energy transition, specific options could be prioritized based on an improved balance between carbon abatement and costs.
Model coupling, Smart energy systems, Energy system analysis, EnergyPLAN, EPLANoptMAC, Marginal abatement cost curve
Model coupling, Smart energy systems, Energy system analysis, EnergyPLAN, EPLANoptMAC, Marginal abatement cost curve
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).12 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
