Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Separation and Purif...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Separation and Purification Technology
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Development of a liquid chromatographic method for the separation of a liquid organic hydrogen carrier mixture

Authors: Mirjana Minceva; Mirjana Minceva; Wolfgang Arlt; Karsten Müller; Rabya Aslam;

Development of a liquid chromatographic method for the separation of a liquid organic hydrogen carrier mixture

Abstract

Abstract Liquid organic hydrogen carriers (LOHC) are an interesting option for hydrogen storage and transportation. This concept is based on reversible hydrogenation and dehydrogenation of a carrier compound for uptake and release of hydrogen respectively. Among others, dibenzyltoluene is a potential LOHC due to its reasonable hydrogen storage capacity (6.2 ma-%) and high thermal stability. However, a huge number of stable intermediates with different degrees of hydrogenation are observed in a partially hydrogenated reaction mixture of dibenzyltoluene. For the process development and studies of the dibenzyltoluene reaction mechanism, it is crucial to determine physico-chemical properties of its various partially hydrogenated fractions, which requires their isolation from the reaction mixture. In this work, a reversed-phase high performance liquid chromatography (RP-HPLC) method for the separation and purification of partially hydrogenated mixtures of dibenzyltoluene is presented. The method was developed and validated at analytical scale and successfully scaled up to semi-preparative scale. The mixture was separated into four fractions according to their degree of hydrogenations using phenylhexyl silica stationary phase and a mobile phase consisting of acetone/water (96/4, v/v). Fractions with purity above 98% and yield higher than 90% were obtained in a semi-preparative column with an internal diameter of 50 mm.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Average
Top 10%