
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Membrane condenser configurations for water recovery from waste gases

Aim of the present paper is to investigate and compare the performance of three different possible membrane condenser configurations in terms of amount of recovered liquid water and energy consumption. Membrane condenser is an innovative unit operation utilized for the recovery of evaporated waste water from industrial gases. In the first proposed configuration, the fed waste gas is cooled by cooling water before entering the membrane module; in the second configuration the cooling is obtained inside the membrane module through a cold sweeping gas; the third configuration is in between the two previous ones: the fed waste gas is first partially cooled via an external medium and then a sweeping gas is used for the final cooling of the stream. The achieved results indicate that configuration 2 has the lowest energy consumption, and configuration 3 allows achieving the highest water recovery whereas its energy consumption is in between configuration 1 and 2.
- National Research Council Italy
- National Academies of Sciences, Engineering, and Medicine United States
- Institute on Membrane Technology Italy
- National Research Council United States
- University of Calabria Italy
Membrane condenser, Dehydration of gaseous streams, Process configuration
Membrane condenser, Dehydration of gaseous streams, Process configuration
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).38 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
