Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Separation and Purif...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Separation and Purification Technology
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Separation and Purification Technology
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Harvesting water from air using adsorption material – Prototype and experimental results

Authors: Sleiti, Ahmad K.; Al-Khawaja, Hamza; Al-Khawaja, Hassan; Al-Ali, Mohammed;

Harvesting water from air using adsorption material – Prototype and experimental results

Abstract

Abstract Drinking water resources have always been limited in the gulf region of the Middle East and other desert regions around the world. In attempt to provide viable supplement, a device that harvests clean drinking water from air is designed, built and tested. The operation of the device is based on harvesting water naturally from air using adsorption materials. The prototype of this device consists of sorbent (silica gel is used in this study) exposed to radiant flux, water sorbent unit, condenser and reflector. Experimental studies of production of fresh water from air in controlled indoor environment have been carried out using the prototype. Several experimental tests were conducted under the conditions of 22 °C ambient temperature, a range of relative humidity (RH) from 30 to 60%, a range of silica gel thickness from 25 to 35 mm, surface area to volume ratio from 0.29 to 0.4 and radiant heat flux range from 509 to 556 W/m2. The prototype was able to produce up to 159 g of water per 1 kg of silica gel in a 12 h cycle when exposed to 556 W/m2 radiant flux. In terms of per one day (24 h), the harvester can produce 800 mL of water with an overall efficiency of 50% for 25 mm silica layer thickness. Increasing the relative humidity speeds up the adsorption cycle and increases the water capture, release and collection rates. The system can be improved by adding multiple layers of sorbent stacked on top of each other and by using sorbents with improved adsorption and desorption properties.

Country
Qatar
Keywords

Condensation, Air water harvesting, Water harvester, Test setup, Adsorption based atmospheric water harvesting

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    69
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
69
Top 1%
Top 10%
Top 1%
Green
hybrid