Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Sustainable Energy T...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Sustainable Energy Technologies and Assessments
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Robust approach based chimp optimization algorithm for minimizing power loss of electrical distribution networks via allocating distributed generators

Authors: Dalia Yousri; Ahmed Fathy; Almoataz Y. Abdelaziz; Haitham Saad Mohamed Ramadan;

Robust approach based chimp optimization algorithm for minimizing power loss of electrical distribution networks via allocating distributed generators

Abstract

Abstract Integrating distributed generators (DGs) in radial distribution networks plays a vital role in improving the system performance via enhancing the bus voltage and minimizing the system losses. Nonetheless, uncoordinated DGs integration may cause technical issues if they are not efficiently planned, controlled, and operated. Therefore, this paper proposes a new methodology based on the recent metaheuristic chimp optimizer approach (CO) to identify DGs’ optimal allocations and rated powers. This work's objective function is minimizing the total active power loss of the network; the considered constraints are load flow, buses’ voltages, and transmission lines. The proposed CO is characterized by ease of implementation, high convergence rate, and avoiding stuck in local optima. CO is adapted such that the first design variables are integer numbers representing the locations of DGs while the others are assigned to be the DGs’ powers. The proposed CO is applied on three radial networks, 33-bus, 69-bus, and 119-bus, moreover two modes of DGs, unity power factor (DGs generate only active power) and non-unity power factor (DGs generate active and reactive powers), are studied. The results obtained via the proposed CO are compared to other reported approaches of exhaustive load flow (ELF), genetic algorithm (GA), and different programmed approaches of particle swarm optimizer (PSO) and Archimedes optimization algorithm (AOA). The obtained results confirmed the superiority and reliability of the proposed CO methodology in achieving a minor power loss via installing the DGs in the correct sites.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Top 10%
Top 10%