
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The second law analysis of a humidification-dehumidification desalination system using M-cycle

Humidification-dehumidification desalination (HDD) systems offer a feasible approach for the production of fresh water in inaccessible areas as they can be operational using renewable energy and require little maintenance. Various studies are being carried out to boost the system performance. In this paper, an open air open water HDD system is proposed that exploits the enhanced evaporation and condensation processes by implementing with the Maisotsenko cycle (M-cycle). The system utilizes solar energy as the energy input to heat the saline water. A thermodynamic model is formulated under steady-state conditions, considering the first and second law of thermodynamics. The energetic and exergetic performance of the system is studied. The model is first validated with the experimental data and a good agreement is found where the maximum discrepancy is about 6.0 %. Effects of different operating conditions on key performance parameters such as the Gain Output Ratio (GOR), specific energy consumption (SEC), exergy destruction, and exergy efficiency are analyzed. An improvement is observed in the GOR when the inlet air temperature is raised at constant humidity ratio. The system exhibits better performance in dry air environment when compared with humid air environment. The analysis shows a maximum mass flow rate of desalinated water of 22.3 kg/h, recovery ratio (RR) of 0.223, GOR of 3, SEC of 0.23 kWh/kg and an exergy efficiency of 43.21 %.
- Kyushu University Japan
- University of Oxford United Kingdom
- Kyushu University Japan
- University College London United Kingdom
690, Humidification-dehumidification, Exergy efficiency, Desalination, Exergy destruction, M-cycle
690, Humidification-dehumidification, Exergy efficiency, Desalination, Exergy destruction, M-cycle
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).3 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
