Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy
Article . 2008 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Treatment of dairy wastewater using anaerobic and solar photocatalytic methods

Authors: S. Kaliappan; J. Rajesh Banu; Ick-Tae Yeom; S. Anandan;

Treatment of dairy wastewater using anaerobic and solar photocatalytic methods

Abstract

Abstract The present study was aimed to treat the dairy wastewater by using anaerobic and solar photocatalytic oxidation methods. The anaerobic treatment was carried out in a laboratory scale hybrid upflow anaerobic sludge blanket reactor (HUASB) with a working volume of 5.9 L. It was operated at organic loading rate (OLR) varying from 8 to 20 kg COD/m3 day for a period of 110 days. The maximum loading rate of the anaerobic reactor was found to be 19.2 kg COD/m3 day and the corresponding chemical oxygen demand (COD) removal at this OLR was 84%. The anaerobically treated wastewater at an OLR of 19.2 kg COD/m3 day was subjected to secondary solar photocatalytic oxidation treatment. The optimum pH and catalyst loading for the solar photochemical oxidation was found to be 5 and 300 mg/L, respectively. The secondary solar photocatalytic oxidation using TiO2 removed 62% of the COD from primary anaerobic treatment. Integration of anaerobic and solar photocatalytic treatment resulted in 95% removal of COD from the dairy wastewater. The findings suggest that anaerobic treatment followed by solar photo catalytic oxidation would be a promising alternative for the treatment of dairy wastewater.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    92
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
92
Top 10%
Top 10%
Top 10%