Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy
Article . 2010 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Reliability analysis of solar photovoltaic system using hourly mean solar radiation data

Authors: P. S. Kulkarni; R. M. Moharil;

Reliability analysis of solar photovoltaic system using hourly mean solar radiation data

Abstract

This paper presents the hourly mean solar radiation and standard deviation as inputs to simulate the solar radiation over a year. Monte Carlo simulation (MCS) technique is applied and MATLAB program is developed for reliability analysis of small isolated power system using solar photovoltaic (SPV). This paper is distributed in two parts. Firstly various solar radiation prediction methods along with hourly mean solar radiation (HMSR) method are compared. The comparison is carried on the basis of predicted electrical power generation with actual power generated by SPV system. Estimation of solar photovoltaic power using HMSR method is close to the actual power generated by SPV system. The deviation in monsoon months is due to the cloud cover. In later part of the paper various reliability indices are obtained by HMSR method using MCS technique. Load model used is IEEE-RTS. Reliability indices, additional load hours (ALH) and additional power (AP) reduces exponentially with increase in load indicates that a SPV source will offset maximum fuel when all of its generated energy is utilized. Fuel saving calculation is also investigated. Case studies are presented for Sagardeep Island in West Bengal state of India.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    77
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
77
Top 10%
Top 10%
Top 10%