Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy
Article . 2012 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Testing method for thermal performance based rating of various solar dryer designs

Authors: Shobhana Singh; Subodh Kumar;

Testing method for thermal performance based rating of various solar dryer designs

Abstract

Abstract A generalized methodology is developed for thermal testing of various solar dryer designs operated for natural and forced air flow conditions. The steady state mathematical model based on heat balance concept of solar dryer without load is applied to identify the dimensionless parameter called no-load performance index (NLPI). Laboratory models of direct (cabinet), indirect and mixed mode solar dryer are designed and constructed to perform steady state thermal tests for natural and forced air circulation. The dryers with no-load are operated with air passage between absorber plate and glass cover for the range of 300–800 W/m2 and 0.009–0.026 kg/s of absorbed thermal energy and air mass flow rate respectively under indoor simulation conditions. The present study reveals that the forced convection operated dryer provides higher NLPI in contrast to that of natural convection. The comparative performance analysis of dryers indicates that the mixed mode dryer exhibits maximum value of NLPI followed by indirect and cabinet ones for both natural and forced air circulation. It is also found that for any dryer operating at given air flow condition, almost invariable NLPI values have been obtained for a wide range of absorbed energy and ambient air temperature data, thus facilitating performance comparison between different dryer designs on equitable basis. The results of statistical analysis showing low standard errors of mean further demonstrate good consistency in NLPI values for various dryer designs. The uncertainty in NLPI due to error in measurement of several parameters by instruments ranges from 0.79 to 1.96% for various dryer designs operated under different conditions.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    54
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
54
Top 10%
Top 10%
Top 10%