Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy
Article . 2013 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Experimental study of a solar desalination pond as second stage in proposed zero discharge desalination process

Authors: Mohammad Soltanieh; M.R. Jafari Nasr; Dariush Mowla; Farshad Farahbod;

Experimental study of a solar desalination pond as second stage in proposed zero discharge desalination process

Abstract

Abstract This work represents the efficiency of a solar desalination pond as a second stage of proposed zero discharge desalination processes to reach fresh water and also concentrated brine from the effluent wastewater of the desalination unit of Mobin petrochemical complex. So a solar desalination pond is constructed after a pretreatment unit to concentrate the softened wastewater to about 20 wt%. The concentrated wastewater is as a suited feed for a forced circulation crystallizer. During one year, the effects of major parameters such as ambient temperature and solar insolation rate are investigated, experimentally. specific gravity in each layer of concentrated brine wastewater is evaluated. Also, evaporation rates are calculated theoretically and are verified by experimental data. Theoretical values predict evaporation rate accurately. Results show good agreement with experimental data. According to results, maximum evaporation rate is 5 l/m 2 day when the insolation rate is about 24,602 kJ/m 2 day Solar energy absorption factor on June is max. Also, experimental results show the best proposed time to gain highest thermal energy is on spring therefore performance efficiency of solar desalination pond promote on spring comparing with the other months. Extracted data for specific gravity prove the bottom of solar desalination pond, layer 1, is best zone for energy saving and energy utilization. Also, theoretical values of evaporation rate are calculated according to measured temperatures and related mass conservation equation. Comparison between theoretical and experimental values shows dusty weather, humidity and wind velocity affects on heat transfer coefficients approximately. So, deviations between theoretical data and measured values can be explained. Results show good agreements with experimental data.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    41
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
41
Top 10%
Top 10%
Top 10%