Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio della Ricer...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy
Article . 2013 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Interferometric study of microchamber in large area dye solar cells

Authors: Aldo Di Carlo; Thomas M. Brown; Vittoria Roiati; Andrea Reale; Lorenzo Dominici; Lorenzo Dominici; Francesco Michelotti;

Interferometric study of microchamber in large area dye solar cells

Abstract

Abstract Dye-sensitized solar cells (DSCs) have a typical sandwich structure, with the active layers between two conductive glass sheets. Their co-planarity could be an issue in the mass production of large area devices. The micrometric gap should be uniform all over the device, in order to maintain a good electrolyte layer. The frames of sealant, which isolate the adjacent cells in a module, usually work also as spacers. Nevertheless, the uniformity of the gap is not commonly tested in a systematic way. Here large area empty blanks and full DSCs were studied by means of optical interferometry, i.e., monochromatic surface scan and wavelength scan. The collected fringe patterns allowed retrieval of the microchamber’s absolute profile. In some cases, evident U-shaped bending was found, with edge-to-center variation up to Δ h / h ≈ 80%. Interestingly, despite the large absorption and the weak index contrast in the full DSCs, a good fringes’ visibility was achieved, by adopting near-infrared (IR) laser source and filtering off external reflections. Moreover, the IR n and k indexes of porous titania dyed and filled with electrolyte were retrieved. In summary, the results show that the bending effect must always be tackled for large area, by using the right sealing frames and thermal treatments. Further improved IR interferometry can be successfully implemented for in-line testing of DSCs structure and uniformity.

Country
Italy
Keywords

Refractive index, 600, Dye solar cell, Dye solar cells; Scanning interferometry; Glass bending; Thin films; Refractive index, Scanning interferometry, Glass bending, Settore ING-INF/01 - ELETTRONICA, Thin film, dye solar cells; glass bending; refractive index; scanning interferometry; thin films

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average