
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Cobalt oxide based structured bodies as redox thermochemical heat storage medium for future CSP plants

Abstract The present work is an investigation of the redox performance of several cobalt oxide based compositions, as candidate materials for energy storage in future concentrated solar power plants. To this respect, various commercial and in-house synthesized grades were evaluated in the form of small structured perforated monolithic bodies (flow-through pellets) and assessed in terms of their capability to perform reversible cyclic reduction–oxidation reactions under air flow in the temperature range of 800–1000 °C. The compositions studied involved pure cobalt oxide as well as composites of cobalt oxide with ceria, zirconia, alumina, iron oxide, silicon carbide and manganese oxide. The main criterion for the evaluation of compositions considered was a combination of high redox reaction extent with good thermo-mechanical stability of fabricated structured bodies. Among the materials studied and based on this criterion, the most promising ones were the cobalt oxide–alumina and cobalt oxide–iron oxide composites. Although pure cobalt oxide, and especially one grade synthesized in the lab, exhibited the highest redox performance, the respective shaped structures did not manage to retain their macro-structural integrity in the course of 10 redox cycles. Moreover, it was found that, under certain conditions, the addition of ceria improved redox reaction kinetics, while total performance of cobalt oxide was not affected. However, the structural stability of cobalt oxide–ceria pellets was also problematic. It was also demonstrated that by varying the second oxide, the start-of-reduction/oxidation temperatures of cobalt oxide can be significantly altered. A preliminary simplified kinetic model was developed and its good agreement with pure cobalt oxide redox experimental data was also demonstrated. Post-characterization of used structured bodies confirmed the experimental findings of redox performance measurements and, to some extent, provided explanations regarding the main phenomena involved upon cyclic operation of different compositions employed.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).97 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
