Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy
Article . 2014 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Cobalt oxide based structured bodies as redox thermochemical heat storage medium for future CSP plants

Authors: George Karagiannakis; Margaritis Kostoglou; Alexandra Zygogianni; Michael Rattenburry; James W. Woodhead; Chrysoula Pagkoura; Athanasios G. Konstandopoulos; +1 Authors

Cobalt oxide based structured bodies as redox thermochemical heat storage medium for future CSP plants

Abstract

Abstract The present work is an investigation of the redox performance of several cobalt oxide based compositions, as candidate materials for energy storage in future concentrated solar power plants. To this respect, various commercial and in-house synthesized grades were evaluated in the form of small structured perforated monolithic bodies (flow-through pellets) and assessed in terms of their capability to perform reversible cyclic reduction–oxidation reactions under air flow in the temperature range of 800–1000 °C. The compositions studied involved pure cobalt oxide as well as composites of cobalt oxide with ceria, zirconia, alumina, iron oxide, silicon carbide and manganese oxide. The main criterion for the evaluation of compositions considered was a combination of high redox reaction extent with good thermo-mechanical stability of fabricated structured bodies. Among the materials studied and based on this criterion, the most promising ones were the cobalt oxide–alumina and cobalt oxide–iron oxide composites. Although pure cobalt oxide, and especially one grade synthesized in the lab, exhibited the highest redox performance, the respective shaped structures did not manage to retain their macro-structural integrity in the course of 10 redox cycles. Moreover, it was found that, under certain conditions, the addition of ceria improved redox reaction kinetics, while total performance of cobalt oxide was not affected. However, the structural stability of cobalt oxide–ceria pellets was also problematic. It was also demonstrated that by varying the second oxide, the start-of-reduction/oxidation temperatures of cobalt oxide can be significantly altered. A preliminary simplified kinetic model was developed and its good agreement with pure cobalt oxide redox experimental data was also demonstrated. Post-characterization of used structured bodies confirmed the experimental findings of redox performance measurements and, to some extent, provided explanations regarding the main phenomena involved upon cyclic operation of different compositions employed.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    97
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
97
Top 1%
Top 10%
Top 1%