Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
DLR publication server
Other literature type . 2015
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Light concrete shells for parabolic trough collectors – Conceptual design, prototype and proof of accuracy

Authors: Forman, P.; Müller, S.; Ahrens, M.A.; Schnell, J.; Mark, P.; Höffer, R.; Hennecke, Klaus; +1 Authors

Light concrete shells for parabolic trough collectors – Conceptual design, prototype and proof of accuracy

Abstract

Abstract Up to now modules of parabolic trough collectors are usually made from steel frames carrying curved mirror elements. With these, the crucial disadvantage is the separation between supporting structure and reflecting surface. Here, the independent parts are merged to a very thin and light-weight but solid concrete shell having a highly precise inner surface that serves as substrate for mirror elements. Since concrete is originally very brittle and weak in tension, a special high-strength concrete with remarkable tensile strength is developed. Based on numerical analyses employing linear elastic material behaviour and limiting stresses below the tensile strength, two alternative module candidates have been designed with geometries close to already existent modules. Their design accounts for operation states by means of analytically and experimentally derived actions and constraints as well as time-dependent material effects. A first prototype on novel concrete supports demonstrates general feasibility. Highly accurate surfaces of the concrete shell, having a few centimetres of thickness only, prove structural stiffness and full optical efficiency in tests employing digital close range photogrammetry and analytically derived precision rates based on the surface slope error.

Country
Germany
Keywords

High-strength concrete, Shell structures, Photogrammetry, Slope error, Parabolic trough, Wind loads

Powered by OpenAIRE graph
Found an issue? Give us feedback