Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Low-temperature templated synthesis of porous TiO2 single-crystals for solar cell applications

Authors: Hua Yu; Lianzhou Wang; Matthew Dargusch;

Low-temperature templated synthesis of porous TiO2 single-crystals for solar cell applications

Abstract

A facile low-temperature synthetic method of growing semiconductor mesoporous single-crystal of anatase TiO2 directly on FTO substrate was developed. The templated hydrothermal synthesis approach was employed to make mesoporous single-crystal TiO2 that contains pores tens to hundreds of nanometres in size under low temperature, which opens a potential way to produce useful functional thin film photoanodes by one-pot approach for fabricating cheap and highly efficient optoelectronic devices. This method is based on seeded nucleation and growth inside a pre-formed mesoporous silica film template immersed in diluted precursor solution. The electrochemical characterizations showed that the directly grown mesoporous single-crystal thin film on FTO substrate has substantially higher conductivity and electron mobility than conventionally deposited TiO2 thin films by printing techniques. Hence, using the as-synthesized mesoporous single-crystal thin film baking at 150 degrees C as photoanodes, an encouraging 5.83% solar to electricity conversion efficiency was achieved. It is expected that the developed mesoporous single-crystals on FTO substrate may find broader applications in many different technologies. This generic synthetic strategy extends the possibility of mesoporous single-crystal films directly growing to a range of substrates. Moreover, this approach could work at lower temperatures below 150 degrees C, which could considerably minimize the environmental impact and production costs of high performance mesoporous materials. (C) 2015 Elsevier Ltd. All rights reserved.

Country
Australia
Keywords

Sustainability and the Environment, 2500 Materials Science, Anatase TiO2, Solar cell, Mesoporous single-crystal, 2105 Renewable Energy, 620, Low-temperature hydrothermal, Templated synthesis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Average
Related to Research communities
Energy Research