
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Thermodynamic analysis of reversible hydrogenation for heat storage in concentrated solar power plants

Abstract Heat storage in concentrated solar power plants is required to compensate for variable availability of solar radiation. The energy density achievable with thermochemical heat storage is higher than for molten salt which represents the state of the art technology. The efficiency of different reversible hydrogenation reactions as thermochemical heat storage systems have been examined, since they can be operated at appropriate temperatures. Thermal efficiency of reversible hydrogenation based thermal energy storage can reach values up to 65.9% and an overall efficiency of up to 23.1% compared to 25.7% without heat storage. The LOHC dibenzyltoluene and the metal hydride magnesium hydride turn out to be most suitable for this application.
- University of Erlangen-Nuremberg Germany
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).11 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
