Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solar Energy
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Influence of PV technology and system design on the emission balance of a net zero emission building concept

Authors: Clara Good; Torhildur Kristjansdottír; Aoife Houlihan Wiberg; Laurent Georges; Anne Grete Hestnes;

Influence of PV technology and system design on the emission balance of a net zero emission building concept

Abstract

Abstract This paper presents an analysis of how the design of a photovoltaic (PV) system influences the greenhouse gas emission balance in a net zero emission building (nZEB). In a zero emission building, the emissions associated both with the energy required in the operation of the building (operational emissions) and the energy used to produce the building materials (embodied emissions) are offset by renewable energy generated on-site (avoided emissions). The analysis is applied to a nZEB concept for a single-family building, developed by the Norwegian Research Centre on Zero Emission Buildings. Previous analyses have shown that the installation of a PV system accounts for a significant share of the embodied emissions of a nZEB. The objective of this paper is to assess how the PV system design choices influence the embodied and avoided emissions, in order to determine how the environmental impact can be minimised. Four different PV technologies (Si-mono, poly-Si and CIS, and high-efficiency Si-mono) in four different system designs for flat roofs are evaluated using two different grid emission factors. The installations are compared by means of net avoided emissions, greenhouse gas payback time (GPBT), greenhouse gas return on investment (GROI), and finally the net emission balance of the building. The results show that the system with the largest area of high-efficiency Si-mono modules achieves the best lifetime emission balance, but that the greenhouse gas return on investment is highest for the optimally oriented CIS modules.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    34
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
34
Top 10%
Top 10%
Top 10%