
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Shape optimization of free-form buildings based on solar radiation gain and space efficiency using a multi-objective genetic algorithm in the severe cold zones of China

Abstract In the severe cold zones of China, solar radiation is one of the most important issues in architectural design. The design seeks to make buildings receive more direct sunlight within the limits of the user’s comfort and simultaneously save energy and space. So far in China, the design of solar radiation has usually been qualitative, not quantitative, and it is often implemented by architects with experience or those following convention. This rough and rigid design approach is not accurate or efficient, particularly in the design of free-form buildings, which comprise a class of irregular-form buildings popular in current architectural design. Moreover, solar radiation is not the only thing that needs to be considered; shape coefficient and space efficiency should also be considered in free-form building design. This study proposes a method for a free-form building that receives more solar radiation though shape optimization and takes into account the other two objectives mentioned above. This paper provides a method with a “Modeling–Simulation–Optimization” framework. In the process of applying this method, parametric modeling with Rhinoceros and Grasshopper is used to build up the free-form building model, and the shape optimization of the building is processed by using the multi-objective genetic algorithm to make sure the three objectives—i.e., to maximize solar radiation gain, to maximize space efficiency, and to minimize the shape coefficient—are all achieved. Finally, a Pareto frontier is generated to show the optimal solutions and to assist designers in making final decisions. The case study shows that compared with the cube-shaped reference building, the total solar radiation gain of the optimized free-form shape building is 30–53% higher, and the shape coefficient value is reduced by 15–20%, with a decrease of less than 5% of the space-efficiency values. The proposed method, according to the basic process of architecture design, uses a performance-driven approach to find solutions that satisfy the requirements. It can be used in real architectural design to solve practical optimization problems.
- Chinese Academy of Sciences China (People's Republic of)
- Chinese Academy of Sciences China (People's Republic of)
- Shenyang Jianzhu University China (People's Republic of)
- Shenyang Jianzhu University China (People's Republic of)
- Shandong Women’s University China (People's Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).121 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
