
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Investigation of parasitic absorption and charge carrier recombination losses in plasmonic silicon solar cells using quantum efficiency and impedance spectroscopy

Abstract Quantum efficiency and impedance spectroscopy tools are employed for understanding the influence of parasitic absorption losses and partial field effect surface passivation by the silver nanoparticles (Ag NPs) on electrical properties of textured silicon solar cells without and with Si3N4 spacer layer. The parasitic absorption losses from Ag NPs reduced the internal quantum efficiency near the surface plasmon resonance region. The passive components like; series and parallel resistances, chemical capacitance of solar cells without and with Ag NPs are estimated after fitting impedance semicircles, which are further used for estimating effective carrier lifetime (τeff) values. Under AM1.5G illumination, cells with Si3N4 spacer layer showed a large decrease in the τeff due to the strong parasitic absorption losses from the Ag NPs. But, the cells without Si3N4 spacer layer showed a small decrease in the τeff due to the reduced surface recombination after partial field effect passivation from near-fields of Ag NPs’ surface plasmon resonances on the emitter surface.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).10 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
